
Pareto Optimal Schemes in Coded Caching:
Uncoded Prefetching

Vijith Kumar K P
Department of EEE

IIT Guwahati, INDIA
Email: vijith@iitg.ac.in

Brijesh Kumar Rai
Department of EEE

IIT Guwahati, INDIA
Email: brijesh.rai@gmail.com

Tony Jacob
Department of EEE
IIT Guwahati, INDIA

Email: tonyj@iitg.ac.in

Abstract—The problem of coded caching was introduced by
Maddah-Ali and Niesen and has been extensively studied in
recent years. The problem is fundamentally a multi-objective
optimization problem where the rates achieved for each demand
type is of interest and Pareto optimality is a natural framework.
Under the constraint that the placement phase is uncoded, Yu
et al. introduced the YMA scheme which was shown to be
universal for all demand types. Vijith et al. showed that there
are no universal schemes when coded placement is permitted
and introduced the problem of finding Pareto optimal schemes.
In this paper we study the possibility of finding schemes that
dominate the YMA scheme and demonstrate, rather surprisingly,
that they continue to operate at the Pareto optimal frontier
of coded caching for (#,) cache networks when ≤ 3. We
introduce new lower bounds which partially characterize the
tradeoffs between different demand types.

Index Terms—Cache network, coded caching, uncoded
prefetching, Pareto optimal.

I. INTRODUCTION

The (#,) canonical cache network, introduced by
Maddah-Ali and Niesen [1], has a server with # files,
{,1, . . . ,,# }, and users connected to the server through a
shared link. The files are assumed to be of same size, � bits,
and each user is assumed to have a cache memory of size
"� bits (" ∈ [0, #]), as depicted in Fig. 1. This network
operates in two phases. In the first phase, called the placement
phase, server fills each user’s cache with coded versions of the
files without knowing their future demands. After knowing the
demands of each user, the server broadcasts packets to all users
over the shared link and this phase is called the delivery phase.
The objective of the delivery phase is to aid the recovery of the
demanded files at each user, from the broadcast packets and the
user’s cache contents. Let the users’ demands be represented
by d = (,31 , . . . ,,3), where,3; is the file requested by user
*; . In response to the demand d, the server broadcasts a set of
packets -d. As Tian [2] noted, the problem of coded caching
as introduced above is a symmetric one and he demonstrated
that for any coded caching scheme there exists a symmetric
scheme with the same or better performance. As the caches
are filled in the placement phase without any knowledge of the
future demands by the users, it is natural to consider that each
cache’s content is a symmetric function of the files. Given
this symmetry, any permutation among the files demanded
by the users could be satisfied at the same broadcast rate in

,1 ,2 . . . ,#−1 ,#

*1

/1

*2

/2

*

/ . . .

Files

Server � bits

"� bitsCache

 users
User 1 User 2 User

Fig. 1: The (#,) cache network [1].

the delivery phase. To formalize this, all demands which are
permutations of each other are grouped into a demand type
and the rate required for each demand type is studied. The
performance of a coded caching scheme is evaluated based on
the rates corresponding to each demand type. The design of
symmetric schemes for coded caching is thus a multi-objective
optimization problem where the rate for each demand type is
an objective of interest.

In [1], Maddah-Ali and Niesen focused on demands where
each of the users request distinct files and introduced a scheme
that was shown to be order optimal by deriving cut set bounds
which demonstrated that the rate achieved by the scheme
for these demands is within a multiplicative gap of 12 from
the lower bounds. For these demands, several schemes that
improve upon this scheme and several improvements to the
lower bounds were obtained in the literature [4]–[10]. A
modification to this scheme to address the problem of all
demand types was proposed by Yu et al. and was shown
to have a worst case performance within a factor of 2 from
the best possible [8]. We refer to this scheme as the YMA
scheme in this paper. The problem of coded caching with the
placement phase restricted to be uncoded was studied by Yu
et al. [11] who derived new lower bounds for each demand
type under this constraint. A surprising consequence of these
lower bounds was the conclusion that the YMA scheme was
exactly optimal for all demand types, simultaneously. This
demonstrated the existence of a universal scheme among coded
caching schemes where the placement phase is uncoded. The
non-existence of a universal scheme among all symmetric

coded caching schemes was demonstrated by Vijith et al.
[3]. In this context, they introduced the notion of dominance
among coded caching schemes, where a scheme A said to
dominate another scheme B if scheme A achieves the same
or better performance as scheme B for all demand types and
achieves strictly better performance for at least one demand
type. If no scheme dominates a particular scheme, the scheme
operates at the Pareto optimal frontier of the problem of
coded caching. As an example, it was shown that the scheme
introduced by Chen et al. [4] was Pareto optimal. In this
paper, we investigate the possibility of obtaining a scheme
that dominates the YMA scheme when the placement phase
phase is not restricted to be uncoded. We demonstrate, rather
surprisingly, that the YMA scheme continue to operate at the
Pareto optimal frontier of coded caching for (#,) cache
networks when ≤ 3.

Consider the special case where the server has only one
file, i.e., # = 1. The network has only one demand where all
users request for the same file. Let R1 denote the rate that
corresponds to this demand. We have the following result [1]:

Lemma 1. For the (1,) cache network with cache size " ,
achievable rate '1 must satisfy the following constraint

" + '1 ≥ 1 (1)

This situation happens to be trivial as there is no possibility
of coding either in the placement phase or the delivery phase
and the YMA scheme satisfies the constraint with equality
and thus is optimal. In Section II we consider the (#, 2)
network for which new lower bounds and derived and are
used to demonstrate that the YMA scheme is Pareto optimal.
In Section III, we introduce another set of lower bounds for the
(#, 3) cache network and demonstrate that the YMA scheme
is Pareto optimal. We conclude the paper in section IV. The
key identities we use throughout the paper are

� (/: , -d) = � (,3: , /: , -d) (2)
� (,1, . . . ,,# , /: , -d) = � (,1, . . . ,,#) (3)

where (2) follows from the fact that user *: can compute the
file,3: from its cache contents /: and the received packet -d,
and (3) follows from the fact that the cache contents /: and
the broadcast packet -d are functions of files {,1, . . . ,,# }.
For 1 ≤ ! ≤ # , we use the notation ,[!] to denote the set of
files {,1, . . . ,,!}.

II. THE (#, 2) CACHE NETWORK

Consider the cache network where two users, {*1,*2}
are connected to a server with # ≥ 2 files, {,1, . . . ,,# }.
This network has two demand types, where D1 consist of
the demands where both the users request the same file and
D2 consists of the demands where both the users request
distinct files. Let '1 and '2 denote the rates corresponding
to D1 and D2 respectively. The rates achieved by the uncoded
prefetching scheme YMA for the (#, 2) cache network were
characterized by Yu et al. [11] and is summarised in TABLE I
where lower bounds shown in the table were derived under

Cache Size '1 '2 YMA Lower Bounds

0 ≤ " ≤ #
2

1 − 1
#
" 2 − 3

#
" " + #'1 ≥ # , 3" + #'2 ≥ 2#

#

2
≤ " ≤ # 1 − 1

#
" 1 − 1

#
" " + #'1 ≥ # , " + #'2 ≥ #

TABLE I: Rates achieved by the YMA scheme

the constraint that the placement phase is uncoded. They
demonstrate that under such a constraint the YMA scheme
simultaneously achieves the lower bounds for '1 and '2, and
is thus universal. We now derive a new set of bounds, by
relaxing this constraint of uncoded placement, which applies
to all coded caching schemes.

Consider the set of demands {d (?,:) : 1 ≤ ? ≤ 2, 1 ≤ : ≤
− ? + 1}, defined as

d (1,:) = (,: ,,:) (4)
d (2,:) = (,: ,,:+1) (5)

where in demand d (?,:) users request ? distinct files. Let A
denote the set of demands

A = {d (1,1) , d (1,2) , . . . , d (1,#−2) } (6)

and let -A denote the set of all packets broadcast in response
to these demands. As |A| = # − 2, we have

" + (# − 2)'1 ≥ � (/8) + � (-A) ≥ � (/8 , -A) (7)

Note that A = q when # = 2. We now obtain the following
result:

Lemma 2. For the (#, 2) cache network with cache size
" , achievable rates '1 and '2 must satisfy the following
constraints

2" + (2# − 3)'1 + '2 ≥ 2# − 1 (8)
" + (# − 1)'1 + '2 ≥ # (9)

Proof. We have,

2" + (2# − 3)'1 + '2 = 2(" + (# − 2)'1) + '2 + '1
(0)
≥ � (/1, -A) + � (/2, -A) + � (-d (2,#−1)) + � (-d (1,#−1))
(1)
≥ � (/1, -d (2,#−1) , -A) + � (/2, -A, -d (1,#−1))
(2)
= � (,[#−1] , /1, -d (2,#−1) , -A) + � (,[#−1] , /2, -A, -d (1,#−1))
≥� (,[#−1] , /1, -d (2,#−1)) + � (,[#−1] , /2)
(1)
≥ � (,[#−1] , /1, /2, -d (2,#−1)) + � (,[#−1])
(2)
= � (,[#] , /1, /2, -d (2,#−1)) + � (,[#−1])
(3)
= � (,[#]) + � (,[#−1]) = 2# − 1

and

" + (# − 1)'1 + '2 = " + (# − 2)'1 + '2 + '1
(0)
≥ � (/1, -A) + � (-d (2,#−1)) + � (-d (1,#))
(1)
≥ � (/1, -A, -d (2,#−1) , -d (1,#))
(2)
= � (,[#] , /1, -A, -d (2,#−1) ,,# , -d (1,#))
(3)
= � (,[#]) = #

where (0) follows from (7), (1) follows from the submodular-
ity property of entropy, (2) follows from (2), and (3) follows
from (3). �

As shown in TABLE II, the rates achieved by YMA scheme
is tight with respect to the lower bounds presented in Lemma
2. Thus, even when coding is allowed in the placement phase,
no code can dominate the YMA scheme which operates at
the Pareto optimal frontier of the (#, 2) cache network. We
summarize as:

Theorem 1. For the (#, 2) cache network, the YMA uncoded
prefetching scheme is Pareto optimal.

Cache Size '1 '2 Constraints

0 ≤ " ≤ #
2

1 − 1
#
" 2 − 3

#
" 2" + (2# − 3)'1 + '2 = 2# − 1

#

2
≤ " ≤ # 1 − 1

#
" 1 − 1

#
" " + (# − 1)'1 + '2 = #

TABLE II: Constraints satisfied by the YMA scheme

III. THE (#, 3) CACHE NETWORK

Consider the cache network where three users, {*1,*2,*3}
are connected to a server with # ≥ 2 files, {,1, . . . ,,# }.
This network can have three demand types, where D1 consist
of the demands where all three users request the same file,
D2 consists of the demands where two of the users request
the same file and the other user requests a different file
and D3 consists of demands where the three users request
different files (when # ≥ 3). Let '1, '2 and '3 denote the
rates corresponding to D1, D2 and D3 respectively. The rates
achieved by the uncoded prefetching scheme YMA for the
(#, 3) cache network were characterized by Yu et al. [11]
where lower bounds were derived under the constraint that
the placement phase is uncoded. They demonstrate that under
such a constraint the YMA scheme simultaneously achieves
the lower bounds for '1, '2 and '3, and is thus universal. We
now derive a new set of bounds, by relaxing this constraint
of uncoded placement, which applies to all coded caching
schemes.

A. Case I: The (2, 3) cache network

Here, the server has two files {�, �} and there are only two
demand types, D1 and D2. We now obtain the following result:

Lemma 3. For the (2, 3) cache network with cache size
" , achievable rates '2 and '1 must satisfy the following
constraints

2" + '1 + '2 ≥ 3 (10)
4" + 2'1 + 3'2 ≥ 7 (11)

" + '1 + '2 ≥ 2 (12)

Proof. We have,

2" + '1 + '2 ≥� (/1) + � (-(�,�,�)) + � (/2) + � (-(�,�,�))
(0)
≥ � (/1, -(�,�,�)) + � (/2, -(�,�,�))
(1)
= � (�, /1, -(�,�,�)) + � (�, /2, -(�,�,�))
(0)
≥ � (�, /1, /2, -(�,�,�) , -(�,�,�)) + � (�)
(1)
= � (�, �, /1, /2, -(�,�,�) , -(�,�,�)) + � (�)
(2)
= � (�, �) + � (�) = 3

We also have

4" + 2'1 + 3'2

≥� (/1) + � (-(�,�,�)) + � (/1) + � (-(�,�,�)) + � (-(�,�,�))
+ � (/2) + � (-(�,�,�)) + � (/3) + � (-(�,�,�))

(0)
≥ � (/1, -(�,�,�)) + � (/1, -(�,�,�)) + � (-(�,�,�))
+ � (/2, -(�,�,�)) + � (/3, -(�,�,�))

(1)
= � (�, /1, -(�,�,�)) + � (�, /1, -(�,�,�)) + � (-(�,�,�))
+ � (�, /2, -(�,�,�)) + � (�, /3, -(�,�,�))

(0)
≥ � (�, /1, -(�,�,�) , -(�,�,�)) + � (�, /1) + � (-(�,�,�))
+ � (�, /2, -(�,�,�)) + � (�, /3, -(�,�,�))

(0)
≥ � (�, /1, -(�,�,�) , -(�,�,�)) + � (�, /1, -(�,�,�))
+ � (�, /2, -(�,�,�)) + � (�, /3, -(�,�,�))

(1)
= � (�, �, /1, -(�,�,�)) + � (�, /1, -(�,�,�) , -(�,�,�))
+ � (�, /2, -(�,�,�)) + � (�, /3, -(�,�,�))

(2)
= � (�, �) + � (�, /1, -(�,�,�) , -(�,�,�))
+ � (�, /2, -(�,�,�)) + � (�, /3, -(�,�,�))

(0)
≥ � (�, �) + � (�, /1, /2, -(�,�,�) , -(�,�,�))
+ � (�, -(�,�,�)) + � (�, /3, -(�,�,�))

(1)
= � (�, �) + � (�, �, /1, /2, -(�,�,�) , -(�,�,�))
+ � (�, -(�,�,�)) + � (�, /3, -(�,�,�))

(2)
= 2� (�, �) + � (�, -(�,�,�)) + � (�, /3, -(�,�,�))
(0)
≥ 2� (�, �) + � (�, /3, -(�,�,�) , -(�,�,�)) + � (�)
(1)
= 2� (�, �) + � (�, �, /3, -(�,�,�) , -(�,�,�)) + � (�)
(2)
= 3� (�, �) + � (�) = 7

We finally have,

" + '1 + '2 ≥ � (/1) + � (-�,�,�) + � (-�,�,�)
(0)
≥ � (/1, -�,�,�, -�,�,�)
(1)
= � (�, �, /1, -�,�,�, -�,�,�)
(2)
= � (�, �) = 2

where (0) follows from the submodularity property of entropy,
(1) follows from (2), and (2) follows from (3). �

The rates and the constraints satisfied by the YMA scheme
for the (2, 3) cache network is summarised in TABLE III.

Cache Size '1 '2 Constraints

0 ≤ " ≤ 2
3

1 − 1
2
" 2 − 3

2
" 2" + '1 + '2 = 3

2
3
≤ " ≤ 4

3
1 − 1

2
"

5
3
−" 4" + 2'1 + 3'2 = 7

4
3
≤ " ≤ 2 1 − 1

2
" 1 − 1

2
" " + '1 + '2 = 2

TABLE III: Constraints satisfied by the YMA scheme

As seen in the table, the rates achieved by YMA scheme is
tight with respect to the lower bounds presented in Lemma 3.
Thus, even when coding is allowed in the placement phase,
no code can dominate the YMA scheme which operates at the
Pareto optimal frontier of the (2, 3) cache network.

B. Case II: # ≥ 3
Here, the server has # files {,1, . . . ,,# }. The network has
three demand types D1, D2, and D3. Consider the set of
demands {d (?,:) : 1 ≤ ? ≤ 3, 1 ≤ : ≤ # − ? + 1}, defined as

d (1,:) = (,: ,,: ,,:) (13)
d (2,=) = (,=,,=+1,,=+1) (14)
d (3,=) = (,=,,=+1,,=+2) (15)

where in demand d (?,:) users request ? distinct files. Let B
denote the set of demands

B = {d (1,1) , . . . , d (1,#−3) } (16)

and let -B denote the set of all packets broadcast in response
to these demands. As |B| = # − 3, we have

" + (# − 3)'1 ≥ � (/8) + � (-B) ≥ � (/8 , -B) (17)

Note that B = q when # = 3. We now obtain the following
result:

Lemma 4. For the (#, 3) cache network with cache size " ,
achievable rates '1, '2 and '3 must satisfy the following
constraints

4" + '3 + '2 + (4# − 9)'1 ≥ 4# − 4 (18)
3" + (3# − 6)'1 + '2 + 2'3 ≥ 3# − 1 (19)

" + (# − 2)'1 + '2 + '3 ≥ # (20)

Proof. We have,

4" + '3 + '2 + (4# − 9)'1

=4(" + (# − 3)'1) + '3 + '2 + 3'1
(0)
≥ 2� (/1, -B) + � (/2, -B) + � (/3, -B) + � (-d (3,#−2))
+ � (-d (2,#−2)) + 2� (-d (1,#−2)) + � (-d (1,#))

(1)
= 2� (,[#−3] , /1, -B) + � (,[#−3] , /2, -B)
+ � (,[#−3] , /3, -B) + � (-d (3,#−2)) + � (-d (2,#−2))
+ 2� (-d (1,#−2)) + � (-d (1,#))
≥2� (,[#−3] , /1) + � (,[#−3] , /2) + � (,[#−3] , /3)
+ � (-d (3,#−2)) + � (-d (2,#−2)) + 2� (-d (1,#−2)) + � (-d (1,#))

(2)
≥ � (,[#−3] , /1, -d (3,#−2)) + � (,[#−3] , /2, -d (1,#−2))
+ � (,[#−3] , /1, -d (2,#−2)) + � (,[#−3] , /3, -d (1,#−2))
+ � (-d (1,#))

(1)
= � (,[#−2] , /1, -d (3,#−2)) + � (,[#−2] , /2, -d (1,#−2))
+ � (,[#−2] , /1, -d (2,#−2)) + � (,[#−2] , /3, -d (1,#−2))
+ � (-d (1,#))
≥� (,[#−2] , /1, -d (3,#−2)) + � (,[#−2] , /2)
+ � (,[#−2] , /1, -d (2,#−2)) + � (,[#−2] , /3) + � (-d (1,#))

(2)
≥ � (,[#−2] , /1, /2, -d (3,#−2)) + � (,[#−2])
+ � (,[#−2] , /1, /3, -d (2,#−2)) + � (,[#−2]) + � (-d (1,#))

(1)
= � (,[#−1] , /1, /2, -d (3,#−2)) + � (,[#−1] , /1, /3, -d (2,#−2))
+ � (-d (1,#)) + 2� (,[#−2])

(2)
≥ � (,[#−1] , /1, /2, /3, -d (3,#−2) , -d (2,#−2)) + � (,[#−1] , /1)
+ � (-d (1,#)) + 2� (,[#−2])

(1)
= � (,[#] , /1, /2, /3, -d (3,#−2) , -d (2,#−2)) + � (,[#−1] , /1)
+ � (-d (1,#)) + 2� (,[#−2])

(3)
= � (,[#]) + � (,[#−1] , /1) + � (-d (1,#)) + 2� (,[#−2])
(2)
≥ � (,[#]) + � (,[#−1] , /1, -d (1,#)) + 2� (,[#−2])
(1)
= � (,[#]) + � (,[#] , /1, -d (1,#)) + 2� (,[#−2])
(3)
= 2� (,[#]) + 2� (,[#−2]) ≥ 4# − 4

We also have,

3" + (3# − 6)'1 + '2 + 2'3

=3(" + (# − 3)'1) + 3'1 + '2 + 2'3
(0)
≥ � (/1, -B) + � (/2, -B) + � (/3, -B) + 2� (-d (1,#−2))
+ � (-d (1,#−1)) + � (-d (2,#−1)) + 2� (-d (3,#−2))
≥(see top of this page)
(2)
≥ � (,[#−1] , /1, /2, -d (1,#−2) , -d (2,#−1) , -d (3,#−2))
+ � (,[#−1] , -d (3,#−2)) + � (,[#−1] , /3)

(1)
= � (,[#] , /1, /2, -d (1,#−2) , -d (2,#−1) , -d (3,#−2))

(1)
= � (,[#−3] , /1, -B) + � (,[#−3] , /2, -B) + � (,[#−3] , /3, -B) + 2� (-d (1,#−2)) + � (-d (1,#−1)) + � (-d (2,#−1)) + 2� (-d (3,#−2))
≥ � (,[#−3] , /1) + � (,[#−3] , /2) + � (,[#−3] , /3) + 2� (-d (1,#−2)) + � (-d (1,#−1)) + � (-d (2,#−1)) + 2� (-d (3,#−2))
(2)
≥ � (,[#−3] , /1, -d (2,#−1) , -d (3,#−2)) + � (,[#−3] , /2, -d (1,#−2) , -d (3,#−2)) + � (,[#−3] , /3, -d (1,#−2) , -d (1,#−1))
(1)
= � (,[#−1] , /1, -d (2,#−1) , -d (3,#−2)) + � (,[#−1] , /2, -d (1,#−2) , -d (3,#−2)) + � (,[#−1] , /3, -d (1,#−2) , -d (1,#−1))
≥ � (,[#−1] , /1, -d (2,#−1) , -d (3,#−2)) + � (,[#−1] , /2, -d (1,#−2) , -d (3,#−2)) + � (,[#−1] , /3)

Cache Size '1 '2 '3 Constraints

0 ≤ " ≤ #
3

1 − 1
#
" 2 − 3

#
" 3 − 6

#
" 4" + '3 + '2 + (4# − 9)'1 = 4# − 4

#

3
≤ " ≤ 2#

3
1 − 1

#
"

5
3
− 2
#
"

5
3
− 2
#
" 3" + (3# − 6)'1 + '2 + 2'3 = 3# − 1

2#
3
≤ " ≤ # 1 − 1

#
" 1 − 1

#
" 1 − 1

#
" " + (# − 2)'1 + '2 + '3 = #

TABLE IV: Constraints satisfied by the YMA scheme

+ � (,[#−1] , -d (3,#−2)) + � (,[#−1] , /3)
(3)
= � (,[#]) + � (,[#−1] , -d (3,#−2)) + � (,[#−1] , /3)
(2)
≥ � (,[#]) + � (,[#−1] , /3, -d (3,#−2)) + � (,[#−1])
(1)
= � (,[#]) + � (,[#] , /3, -d (3,#−2)) + � (,[#−1])
(3)
= 2� (,[#]) + � (,[#−1]) = 3# − 1

Finally we have,

" + (# − 2)'1 + '2 + '3
(0)
≥ � (/1, -B) + � (-d (1,#)) + � (-d (2,#−1)) + � (-d (3,#−2))
(1)
= � (,[#−3] , /1, -B) + � (-d (1,#))
+ � (-d (2,#−1)) + � (-d (3,#−2))

(2)
≥ � (,[#−3] , /1, -B, -d (1,#) , -d (2,#−1) , -d (3,#−2))
(1)
= � (,[#] , /1, -B, -d (1,#) , -d (2,#−1) , -d (3,#−2))
(3)
= � (,[#]) = #

where (0) follows from (17), (1) follows from (2), (2) follows
from the submodularity property of entropy and (3) follows
from (3). �

As shown in TABLE IV, the rates achieved by YMA scheme
is tight with respect to the lower bounds presented in Lemma
4. Thus, even when coding is allowed in the placement phase,
no code can dominate the YMA scheme which operates at
the Pareto optimal frontier of the (#, 3) cache network. We
summarize as:

Theorem 2. For the (#, 3) cache network, the YMA uncoded
prefetching scheme is Pareto optimal.

IV. CONCLUSIONS

In [11] Yu et al. studied the problem of coded caching
under the constraint that the placement phase is uncoded.

They introduced the YMA scheme which was shown to be
universal by deriving lower bounds under the constraint of
uncoded placement. In this paper we explore the possibility of
finding schemes that dominate the YMA scheme when coded
placement is permitted. By deriving new lower bounds, we
show that the YMA scheme operates at the Pareto optimal
frontier of the problem of coded caching for (#,) networks
when ≤ 3. A natural problem for further study is whether
this result can be extended to general (#,) cache networks.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[2] C. Tian, “Symmetry, outer bounds, and code constructions: A computer-
aided investigation on the fundamental limits of caching,” MDPI Entropy,
vol. 20, no. 8, p. 603, 2018.

[3] K. P. Vijith Kumar, B. K. Rai, and T. Jacob, “Pareto optimal schemes
in coded caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris,
France, July 2019, pp. 2629–2633.

[4] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching:
Improved bounds for users with small buffers,” IET Communications,
vol. 10, no. 17, pp. 2315–2318, 2016.

[5] M. M. Amiri and D. Gündüz, “Fundamental limits of coded caching:
Improved delivery rate-cache capacity tradeoff,” IEEE Trans. Commun.,
vol. 65, no. 2, pp. 806–815, 2017.

[6] J. Gómez-Vilardebó, “Fundamental limits of caching: Improved rate-
memory trade-off with coded prefetching,” IEEE Trans. Commun, vol. 66,
no. 10, pp. 4488–4497, 2018.

[7] K. P. Vijith Kumar, B. K. Rai, and T. Jacob, “Fundamental limits of coded
caching: The memory rate pair (K-1-1/K, 1/(K-1)),” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Paris, France, July 2019, pp. 2624–2628.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-
memory tradeoff in cache networks within a factor of 2,” IEEE Trans.
Inf. Theory, vol. 65, no. 1, pp. 647–663, 2018.

[9] K. P. Vijith Kumar, B. K. Rai, and T. Jacob, “Towards the exact
rate memory tradeoff in coded caching,” in Proc. IEEE National Conf.
Commun. (NCC), Bangalore, India, February 2019, pp. 1–6.

[10] K. P. Vijith Kumar, B. K. Rai, and T. Jacob, “Towards the Exact Memory
Rate Tradeoff for the (4, 5) Cache Network,” in Proc. IEEE Int. Conf.
Sig. Proce. Commun. (SPCOM), Bangalore, India, July 2020, pp. 1–5.

[11] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded pre-fetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, 2017.

